首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23351篇
  免费   2642篇
  国内免费   1256篇
电工技术   4910篇
技术理论   3篇
综合类   1957篇
化学工业   2209篇
金属工艺   828篇
机械仪表   1831篇
建筑科学   1397篇
矿业工程   1837篇
能源动力   1001篇
轻工业   990篇
水利工程   1374篇
石油天然气   580篇
武器工业   197篇
无线电   2957篇
一般工业技术   852篇
冶金工业   1559篇
原子能技术   106篇
自动化技术   2661篇
  2024年   46篇
  2023年   328篇
  2022年   590篇
  2021年   717篇
  2020年   690篇
  2019年   510篇
  2018年   518篇
  2017年   729篇
  2016年   828篇
  2015年   953篇
  2014年   1548篇
  2013年   1244篇
  2012年   1877篇
  2011年   2020篇
  2010年   1534篇
  2009年   1510篇
  2008年   1378篇
  2007年   1815篇
  2006年   1535篇
  2005年   1239篇
  2004年   959篇
  2003年   909篇
  2002年   719篇
  2001年   585篇
  2000年   541篇
  1999年   449篇
  1998年   336篇
  1997年   237篇
  1996年   193篇
  1995年   150篇
  1994年   129篇
  1993年   111篇
  1992年   87篇
  1991年   60篇
  1990年   45篇
  1989年   32篇
  1988年   23篇
  1987年   10篇
  1986年   10篇
  1985年   12篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   6篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.  相似文献   
2.
《Ceramics International》2021,47(19):26891-26897
KLS-1 Lunar regolith simulant was microwave sintered to explore its potential applicability in future lunar construction. The effects of sintering temperature on linear shrinkage, density, porosity, and microstructural, mechanical, and thermal properties were investigated. As the sintering temperature increased, linear shrinkage and density increased and porosity decreased. Structural evolution in the sintered samples was characterized by scanning electron microscopy and X-ray diffraction. Unconfined compressive strength testing showed that mechanical strength increased significantly with increasing sintering temperature, with 1120 °C giving the highest strength of 37.0 ± 4.8 MPa. The sintered samples exhibited a coefficient of thermal expansion of approximately 5 × 10−6 °C−1, which was well-maintained even after cyclic temperature stress between −100 and 200 °C. Therefore, this microwave processing appears promising for the fabrication of building material with sufficient mechanical strength and thermal durability for lunar construction.  相似文献   
3.
Portlandite (Ca(OH)2; also known as calcium hydroxide or hydrated lime), an archetypal alkaline solid, interacts with carbon dioxide (CO2) via a classic acid–base “carbonation” reaction to produce a salt (calcium carbonate: CaCO3) that functions as a low-carbon cementation agent, and water. Herein, we revisit the effects of reaction temperature, relative humidity (RH), and CO2 concentration on the carbonation of portlandite in the form of finely divided particulates and compacted monoliths. Special focus is paid to uncover the influences of the moisture state (i.e., the presence of adsorbed and/or liquid water), moisture content and the surface area-to-volume ratio (sa/v, mm−1) of reactants on the extent of carbonation. In general, increasing RH more significantly impacts the rate and thermodynamics of carbonation reactions, leading to high(er) conversion regardless of prior exposure history. This mitigated the effects (if any) of allegedly denser, less porous carbonate surface layers formed at lower RH. In monolithic compacts, microstructural (i.e., mass-transfer) constraints particularly hindered the progress of carbonation due to pore blocking by liquid water in compacts with limited surface area to volume ratios. These mechanistic insights into portlandite's carbonation inform processing routes for the production of cementation agents that seek to utilize CO2 borne in dilute (≤30 mol%) post-combustion flue gas streams.  相似文献   
4.
Prediabetes is a high-risk condition for type 2 diabetes (T2D). Pancreatic β-cells adapt to impaired glucose regulation in prediabetes by increasing insulin secretion and β-cell mass expansion. In people with prediabetes, metformin has been shown to prevent prediabetes conversion to diabetes. However, emerging evidence indicates that metformin has negative effects on β-cell function and survival. Our previous study established the Nile rat (NR) as a model for prediabetes, recapitulating characteristics of human β-cell compensation in function and mass expansion. In this study, we investigated the action of metformin on β-cells in vivo and in vitro. A 7-week metformin treatment improved glucose tolerance by reducing hepatic glucose output and enhancing insulin secretion. Although high-dose metformin inhibited β-cell glucose-stimulated insulin secretion in vitro, stimulation of β-cell insulin secretion was preserved in metformin-treated NRs via an indirect mechanism. Moreover, β-cells in NRs receiving metformin exhibited increased endoplasmic reticulum (ER) chaperones and alleviated apoptotic unfold protein response (UPR) without changes in the expression of cell identity genes. Additionally, metformin did not suppress β-cell mass compensation or proliferation. Taken together, despite the conflicting role indicated by in vitro studies, administration of metformin does not exert a negative effect on β-cell function or cell mass and, instead, early metformin treatment may help protect β-cells from exhaustion and decompensation.  相似文献   
5.
6.
《Ceramics International》2022,48(14):20000-20009
Zinc oxide (ZnO) offers a major disadvantage of asymmetry doping in terms of reliability, stability, and reproducibility of p-type doping, which is the main hindrance in realization of optoelectronic devices. The problem is even more complicated due to formation of various native defects in unintentionally doped n-type ZnO. The realization of p-type conductivity in doped ZnO requires an in-depth understanding of the formation of an effective shallow acceptor, as well as donor-acceptor compensation. Photophysical properties such as photoconductivity along with photoluminescence (PL) studies have unprecedentedly and effectively been utilized in this work to monitor the evolution of various in-gap defects. Phosphorus (P) doped ZnO thin films have been grown by RF magnetron sputtering under various Ar to O2 gas ratios to investigate the effect of O2 on the donor-acceptor compensation by comprehensive photoconductivity measurements supported by the PL studies. Initial elemental analyses indicate presence of abundant zinc vacancies (VZn) in O-rich ambience. The results predict that P sits in the zinc (Zn) site rather than the oxygen (O) site causing the formation of PZn–2VZn acceptor-like defects, which compensates the donor defects in P doped ZnO films. Photocurrent spectra uniquely reveal presence of more oxygen vacancies (VO) defects states in lower O2 flow, which gets compensated with an increase in the O2 flow. Successive photocurrent transients indicate probable presence of more VO in the films grown with lower O2 flow and more VZn in higher O2 flow. Overall the photosensitivity measurements clearly present that O-rich ambience expedites the formation of acceptor defects which are compensated, thereby lowering the dark current and enhancing the ultraviolet photosensitivity.  相似文献   
7.
8.
乡村产业中的化石能源设备逐渐被电能技术替代,引起了乡村负荷波动增大、部分时段产生集中高负荷的问题。为了解决以上问题,将低品位清洁能源应用至乡村的茶叶生产中,针对烘茶全过程的工艺要求提出了跨临界CO2热泵烘茶技术;并以某茶叶生产乡村为对象,对其代表台区的全年日用电量及产茶日负荷进行了分析,得出采用CO2热泵烘茶后其负荷得到大幅度削减,整体可降低至原负荷的39.6%~46.8%,峰值负荷与平时负荷的比值由原本的13.6降至5.4~6.2。跨临界CO2热泵应用至农产品生产中可有效缓解乡村供电压力。  相似文献   
9.
Currently, the Electric Power Steering (EPS) system is an essential component of the vehicle because it provides assistive steering torque to the driver. To ensure a faster steering response, the position of the EPS in some vehicles is moved closer to the tire rather than the steering wheel. The steering torque, which is provided by the EPS in the steering system, mainly affects the driver’s feel while steering. Therefore, the driver often feels uncomfortable owing to such positioning of the EPS in the steering system. In particular, the nonlinearity of the Universal Joint (UJ), which is one of parts of the steering system, can be felt at the steering wheel side.In this paper, we proposed an algorithm based on the mathematical model of the steering torque in the steering system to improve the steering feel. The mathematical model is structured using parameters that can be obtained from the information of the steering system. Moreover, the formulation of the steering torque consists of the two parts, namely the deformation part, which describes the propagation inside the steering system, and the friction part that describes the inherent friction in the UJ.Simulation and experiments were conducted to verify the proposed mathematical model with similar conditions to the real tire load during the steering motion. Furthermore, to improve the driver’s feel during steering, a torque compensation algorithm is proposed and verified through experiments.  相似文献   
10.
The demand for food production has been constantly increasing due to rising population. In developed countries, for example, the emergence of regional production of old grains that are rarely utilized, along with the production of commonly consumed grains, has gained importance in recent years. These grains, known collectively as ancient or heirloom grains, have offered both farmers and consumers novel ways of cultivation and products with interesting taste, characteristics and nutritional value. Among the 30 000 plant species known, only five cereals currently provide more than 50% of the world's energy intake – bread wheat (Triticum aestivum), rice (Oryza sativa), sorghum (Sorghum bicolor), millets (Panicum sp.) and maize (Zea mays). The excessive utilization of these selected species has a great potential to cause genetic losses and difficulty in bridging future agricultural demands. Teff (Eragrostis tef), an ancient grain extensively cultivated in countries like Eritrea and Ethiopia, provides promising alternatives for new food uses since its nutritional value is significantly higher than most others cereal grains. The absence of gluten allows flexibility in food utilization since it can be directly substituted to gluten-containing products. The grain also offers an excellent balance of essential amino acids and minerals, which can fulfil the recommended daily intake and eliminates the need for fortification and enrichment. This review provides a general overview of the physical properties and nutritional composition of teff grains related to processing and applications in the food and feed industries. The current status of teff utilization, as well as the challenges in production and commercialization, and future opportunities is presented and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号